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SUMMARY AND RECOMMENDATIONS

A new approach called dynamic multiscale averaging (DMA) for computing the effects of
turbulent flow 1s described. The new method encompasses multiple applications of temporal and
spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) 1s
performed for a relatively short time; it 1s envisioned that this short time should be long enough
to capture several fluctuating time periods of the smallest scales. The flow field variables are
subject to running time averaging during the DNS. After the relatively short time, the time-
averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of
the describing equations generate correlations in the averaged equations. These correlations are
computed from the flow field and added as source terms to the computation on the next coarser
mesh. They represent coupling between the two adjacent scales. Since they are computed
directly from first principles, there is no modeling involved. However, there is approximation
involved in the coupling correlations as the flow field has been computed for only a relatively
short time. After the time and spatial averaging operations are applied at a given stage, new
computations are performed on the next coarser mesh using a larger time step. The process
continues until the coarsest scale needed is reached. New correlations are created for each
averaging procedure. The number of averaging operations needed is expected to be problem
dependent.

The new DMA approach is applied to a relatively low Reynolds number flow in a square duct
segment. The DNS computation is initiated using a nonphysical asymmetric initial condition.
After five seconds of simulation time, running time averages are inifiated and performed for
another two seconds. The time-averaged variables are then volume averaged onto a coarser
mesh. Figure S-1 illustrates the instantaneous stream-wise velocity at 7 seconds and the same
velocity after time and volume averaging. The new coupling correlations are also computed.
These correlations are assumed to be constant for succeeding computations and are added as
source terms. Calculations are then performed using the time and volume-averaged field
variables on the coarser grid. The coarser grid 1s essentially created using a mesh that has been
reduced i each coordinate by a factor of four. The time step 1s increased by a factor of five.
The compute time for a given time interval on the coarse mesh is about 1/500 the corresponding
time required on the fine mesh. Figure S-2 illustrates the time-averaged stream-wise velocity
and vorticity on the coarse mesh at 130 seconds. Time-averaged stream-wise velocity and
vorticity contours appear to be very similar to a full DNS for a similar flow reported in the
literature. Expected symmetry for the final results is produced for the DMA method. The results
obtained indicate that DMA holds significant potential in being able to accurately compute
turbulent flow without modeling for practical engineering applications.

The present study has been performed to demonstrate proof of principle. Significantly more
research should be pursued to fully explore the effectiveness and efficiency of the method.
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Research should be performed to investigate how best to initiate turbulence to minimize the
initial DNS calculation, how long the DNS should be performed, how much to scale-up for a
given scaling, which numerical methods are best (fastest and most accurate) to use to perform
DMA, how well the method performs for large Reynolds number flows and how the method can
be applied to complex geometries.
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Figure S-1. Stream-wise velocity contours at 7 seconds.
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Dynamic Multiscale Averaging (DMA) of Turbulent
Flow

Introduction and Background

One of the most enduring challenges in the field of computer modeling of fluid flow 1s the
challenge of capturing the effects of turbulence on a flow field. Usually, the full detailed effects
are not desired, only the average effects on a time scale significantly larger than that of the
turbulent fluctuations of the flow field. Initial attempts to model the effects of turbulence were
based on the concept of an eddy viscosity, while time-averaging the describing Navier-Stokes
equations for stationary flows — turbulent flows with no unsteadiness other than the turbulence.
Such equations are called the Reynolds-averaged Navier Stokes or RANS equations, where the
averaging is time-averaging for stationary flows and ensemble-averaging for nonstationary
flows.

Since the eddy viscosity contains dimensions of length and velocity, modeling efforts focused on
proposing prescriptions for the length and velocity scales. The velocity scale was usually based
on the turbulent kinetic energy, which has dimensions of velocity squared. Length scales were
based on distance from the wall. Eventually, differential transport equations were derived and
devised for the turbulent kinetic energy and some other quantity, such as dissipation rate, from
which length scales were obtained. Eventually, differential transport equations were derived for
the turbulent Reynolds stresses that appear in the RANS equations and solved for each unique
stress. Unfortunately, such transport equations contain terms that are even more complex than
the Reynolds stresses, such as triple correlations, as compared to the Reynolds stresses, which
are double correlations, and must also be modeled. Scores of turbulence models have been
developed over the years that are used with the RANS equations; such are often referred to as
RANS turbulence models. RANS turbulence models have been successfully used for many
industrial applications over the years and are still useful for many flow simulations. Wilcox
(1993) provides an excellent overview of RANS turbulence models and their applications.

As computers have increased by orders of magnitude in memory capability and raw speed from
early digital computers, new paradigms for computing turbulent flows have been developed. A
straightforward approach developed in the third quarter of the 20" century 1s direct numerical
stimulation (DNS) of turbulence, where the unsteady Navier Stokes equations are directly solved
on finite meshes that are fine enough to capture all of the scales of turbulence, including the
Kolmogorov scales where the turbulent motions are dissipated through viscous action. However,
it was discovered that as the Reynolds number of the turbulent flow increased, the Kolmogorov
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scales decreased in size, making the computation of large Reynolds number flow very
impractical, especially for industrial applications. Nevertheless, advances have been made using
DNS, including an increasing array of applications, as compute power has increased, especially
the application of parallel computing.

An approach for computing turbulent flow that lies between the RANS approach and DNS is
generally called large eddy simulation (LES). Large eddy simulation is based on the notion that
the Navier Stokes equations can be filtered, that is, the small scales of motion can be removed
such that only the larger scales are directly computed, as in DNS, while the small scales are
modeled, usually with simple eddy viscosity models, as in some RANS approaches. The
philosophy for using this approach is that the fine scale motions are more isotropic and can easily
be modeled, while the larger scale motions are simply computed. Much research has been
performed on the LES approach in recent years, while development of new RANS models has
tapered off. The model for the small scales 1s called a sub-grid scale (SGS) model. A large
amount of effort has gone mto developing better SGS models, as more complex flows seem to
require such. Sagaut et al. (2006) provide an excellent overview of LES, DNS and related
approaches to turbulence simulation.

One of the LES type of approaches that has been developed by T. J. R. Hughes and colleagues,
see Hughes et al. (1998), Sagaut (2006} and Bazilevs et al. (2007), is called wvariational
multiscale methods (VMS). VMS was originally developed for more general applications and
has been more recently applied to fluid dynamics. Furthermore, it has evolved from its earlier
definition, see Bazilevs (2007). Initially, VMS divided the turbulence scales into three groups,
two resolved and a fine unresolved one. More recently, only two groups are employed, a coarse
and a fine scale group. The two groups are separated by a projection operator. For spectral
methods, this could be applying a wave number cutoff in Fourier space to separate the two
scales. The fine scales are then solved approximately using an infinite perturbation series
expansion. VMS avoids filtering the describing equations and the attendant problems that comes
with such filtering, such as additional terms that arise from non-commutative filter properties.
Bazilevs (2007) employs higher order (quadratic and cubic) B-spline basis functions to represent
the solutions, declaring that they have better approximation properties than classical higher-order
finite elements.

Another approach by Menon and associates (Kemenov and Menon, 2006) is labeled the two
level simulation (TLS). In the TLS approach, the velocity field is decomposed into a large-scale
(LS) component and a small-scale (SS) component. The decomposition of the primary variable
is inserted into the original Navier-Stokes equation, yielding a new set of equations for the LS
and the SS variables. The approach undertakes to solve the SS field, but only on lines in each of
the three directions, as opposed to volumetric computations. It is shown that this reduces
compute time, versus DNS, but infroduces approximations as the full 3-D nature of the SS
motions 1s not captured. An example 1s given for forced isotropic turbulence and compared to
DNS. Further work 1s suggested to improve the method.



The present work introduces a new approach or paradigm for the computation of turbulence in
fluid dynamics. The approach involves multiscale computations that include averaging over
space and time. The new approach is called dynamic multiscale averaging (DMA). The
describing Navier-Stokes equations are averaged over space and time for multiple scales. Terms
appear in the space- and time-averaged equations that represent the effects of averaging and
effectively link adjacent scales for momentum and mass conservation. The nature of the
approach allows for an unspecified number of scales to be involved 1n the averaging process. It
is expected that the number of scales needed will be problem dependent. The idea is to allow
fine-scale calculations to proceed (essentially a DNS initially) until sufficient characterization of
the finest resolved scales of the flow field is obtained at the current scale before performing
averaging. A running time averaging process is performed during the DNS phase. At an
appropriate time, the time-averaged flow field is then averaged spatially. The computation then
continues at the new coarser spatial scale and with a longer time step for the averaged flow-field
variables until the flow field is again sufficiently characterized and can again undergo averaging.
This paradigm continues until the temporal and spatial scales are sufficiently large for the
problem being simulated. The computation is akin to an LES after the first set of averaging
procedures are performed, except that no filtering has taken place and the finest scales are not
modeled, but actually computed. Further temporal and spatial averaging may be comparable to a
RANS computation, again without any turbulence modeling. Or, in other words, the SGS model
for the LES or the RANS turbulence model is replaced by terms estimated from actual fine-scale
calculations. Furthermore, it is envisioned that the averaging processes may need to be reversed,
in the case of a non-stationary turbulent flow (where a non-turbulent unsteadiness is also
present).

The following sections provide the initial describing equations of fluid dynamics. These
equations are then temporally and spatially averaged. Application of the approach using
commercial and DOE-NE laboratory codes 1s then provided.

Equations for Dynamic Multiscale Averaging

The new paradigm is initially applied to simple incompressible isothermal single phase flow with
constant properties and with no body forces. The describing equations in Cartesian coordinates
for this flow are given in tensor notation as follows:

conservation of mass:
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where repeated indices indicates summation. Equation (2) can be modified by invoking Eqn. (1)
to obtain:

conservation of momentum:

duj duegug _ ap 8%u;

p F axk % ‘u axkaxk (3)

Next, consider turbulent motions that occur on the smallest temporal and spatial scales. Then,
average the describing equations over these smallest scales. However, it will still be the case that
the averaged equations will be subject to turbulent motions over larger temporal and spatial
scales. Before performing a time average, the velocity components and pressure are decomposed
into a small scale time mean and fluctuating component as follows:

u;dt = 1,

w=U+u; p=P+p; U=—=["" ; i

7 = arle, g
where the mean velocity components and pressure are integrated over the smallest time scales.
The exact specification of time scale is probably dependent on the Reynolds number of the flow
as the smallest spatial scales of the flow are a function of the Reynolds number. In fact, it may
be necessary to determine the length of time appropriate to use for the time average here
dynamically as the flow characteristics are computed using the original equations, Egns. (1) and
(3). Also, the beginning of the time integration can begin at any point in time. Numerically, this
should be after any nonphysical perturbations to the initial flow field have been eliminated.
Performing the time average on Eqns. (1) and (3} yields equations that look like typical Reynolds
averaged Navier-Stokes equations, except that the length of the time applied to the time integral
is shortened to include only the small time scales. One obtains:

—_—
= )
and
U QUL U gl ap atu;
ovj kY i . J
P at tr axy P axy dx; + dxpdxy, (6)

where the order of integration and differentiation have been interchanged, the overbar indicating
the time average, and the cross-terms involving products of mean and fluctuating components
have been rendered zero by construction. Because the equations have been averaged only over
the smallest time scales, it is expected that the mean quantities, e.g. U; and P, will still vary in
time over larger time scales.

The small-scale time-averaged describing equations are now spatially averaged over the smallest
spatial scales. Again, a decomposition is applied to the now short-time averaged quantities:

Uy =(U)+ UP; P = (PY+P% (U))=-[U;dV %)
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The deviation Uf from the volumetric average (U;) represents the deviation of the time mean at a
point, or after discretization, of a small scale mesh cell, from the volumetric average on a larger
scale or coarser mesh cell. Through this operation, a new coarser mesh is defined for time and
volumetric averaged quantities. However, new terms have appeared in the time and volumetric
averaged equation that didn’t appear in the fine scale equations. The time and spatially averaged
describing equations are:

AU

ol (®)
and
Huj) |y | BWRUR) | dgaly _ a(p) a2 (u})
at tp Axe i Axk xr  9xj xpdxy ®)

where the differentiation and volume integration have been interchanged. As can be seen in Eqn.
(9), there are two terms that have appeared that represent connections between the finer scale and
the coarser scale. One 1s the volume averaged fine-scale turbulent fluctuations and one is the
volumetric averaged deviation of time mean velocity components from the coarse average. The
time and volume averaged momentum equations are still unsteady in terms of larger scale
motions. Hence, it 1s anticipated to use a larger time step for the coarser equations.

It is envisioned that the above processes of computing for a time, then performing time and
volume averaging can be repeated to reach larger and larger scales, both in time and space. For
example, upon time averaging the primary quantity (U;) from Eqn. (9) yields @, or the time
average of the volume and time averaged velocity. However, the number of levels that would be
appropriate 1s likely problem dependent. However, the newly generated terms provide coupling
between adjacent scales. It is also envisioned that the newly created terms coupling lower scales
to the current scales would not change significantly in time; thus they can be treated as source
terms for the larger scales. The averaged quantities, such as (U;} would be those that would be
computed at the larger scales, until the largest scales needed or desired are reached. That is, the
effects of the finer scales are computed directly using appropriate time and spatial scales, until
representative fields at the scale in question are computed before time and volume averaging are
applied. Then the sizes of the time and volume scales are increased using representative
couplings between scales that have actually been computed. Hence, there is no modeling
required. Based on the above averaging processes, the present approach to computing a
turbulent flow field is called “dynamic multiscale averaging” or DMA. It is further envisioned
that should disturbances to the flow field be encountered after the starting time of the turbulent
field, which would affect the fine scale structure of the evolving field, that the averaging process
might be reversed to return to finer scales to capture the desired effects.

In summary, a flow field domain is discretized to a mesh fine enough to allow accurate DNS to
proceed. After an appropriate length of time, which would characterize eddy motions at the
finest scales, the flow field is temporally and spatially averaged, creating new terms in the
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resulting equations, whose values are computed from the fine mesh flow field. The
computations are then recommenced on a coarser mesh, defined by the spatial averaging, at a
larger time scale to capture the larger scales. By performing this process, perhaps multiple times,
eventually the flow field will be similar to a RANS calculation, except that the coupling
correlations derived from the averaging processes will have been computed, rather than modeled.
Certainly, it 1s the case that a fully temporally-developed DNS calculation can be averaged to
obtain a RANS-like flow field with accompanying averaged values for the Reynolds stresses. In
its least accelerated form, DMA would be exactly such a process. However, if the fine scales can
be computed for a short time, representative of the time scales therein, and so on up through the
scales, then the computation of the final flow field can be accelerated, perhaps greatly so such
that this method, DMA, can be applied to typical industrial applications in a time frame
comparable to that of a RANS calculation, and without traditional turbulence models that
characterize the RANS approach to computing turbulent flow.

Application of Dynamic Multiscale Averaging — DMA

The objective of the present study is to apply dynamic multiscale averaging — DMA - to
incompressible, constant property turbulent flow m a simple geomefry to investigate its
effectiveness and practicality. The geometry selected for performing the study is a segment of a
square duct. DNS calculations have been performed for such a square duct geometry, for a
relatively small Reynolds number by Raiesi et al. (2011} and Pinelli et al. (2010). The Reynolds
stresses in a square duct are known to produce relatively weak secondary flow (in the cross
section), making this an interesting flow case to see if such secondary flows can be generated
using DMA.

The square duct chosen is similar to that of Raiesi et al. (2011) and Pinelli et al. (2010) with a
cross section of 0.1 m by 0.1 m and a length of 0.6 m. Constant fluid properties of 1.18415
kg/m3 for density and 1.85508 x 10~ Pa-sec for dynamic viscosity are used. Two CFD codes
have been employed in the present effort: a commercial CFD code (STARCCM+ version
6.06.011}) and the spectral element code Nek5000°. Initially, the DNS flow was set up in
STARCCM+ with a specified pressure jump from the inlet to the outlet of -0.15 Pa and with
periodic boundaries between the inlet and outlet. This produces a volumetric flow rate of
0.011585 m’/sec; the computed flow rate is then used for the Nek5000 code to produce a simular
flow. The Nek5000 flow problem is also set to have periodic boundaries from the inlet to the
outlet. These parameters yield a Reynolds number of 3697, based on half the width of the cross
section, comparable to the Reynolds number of 3535 used in Pinelli et al. (2010}. A time step
size of 5.0 x 10™ sec is used for both codes for the initial stage of the DMA study.

The first stage of the proposed DMA is to perform a proper but brief DNS calculation. To
achieve turbulent flow, a nonphysical asymmetric initial flow condition is specified. A grid of
200 x 200 x 400 cells was constructed for the STARCCM+ calculation. The grid is finer near
the wall. Figure 1 illustrates a cross-sectional view of the velocity magnitude at the axial half-

® http://nek5000.mes.anl. gov/index . php/Main Page



way point of the square duct segment for the STARCCM+ calculation at compute time of 10.1
seconds; it required about 5 seconds for turbulence to appear in the DNS. It can be seen that
turbulent motions are apparent in the snapshot view of the flow field.

Velocity: Magnitude (m/s)

II.SI
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Figure 1. Velocity magnitude for the STARCCM+ DNS calculation at 10.1 sec.

Figure 2 illustrates the velocity magnitude of the flow at the duct center plane computed using
Nek5000 at 7 seconds of compute time. The grid is a uniform spectral element grid of 24 x 24 x
32 elements in the x, y and z directions, the main flow being in the z-direction. Seventh order
spectral elements are used for the simulation; therefore each spectral element is defined by an 8 x
8 x 8 set of points, with velocity component and pressure values computed for each point.
Hence, the spectral grid is effectively defined by 169 x 169 x 225 points; the boundary points for
each spectral element coincide with boundary points for adjacent elements. An asymmetric
initial condition is also specified for the Nek5000 computation. It can be seen that turbulent
motions are present in the flow field. The DNS calculation required 9.9 hrs per second of
simulation time using 24 parallel cpus.
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The second stage of DMA requires first time and then volume averaging of the flow field,
including creating correlations (u;u;) and (Uf‘UjA). Both STARCCM+ and Nek5000 have built-

In running time-averaging available which yields the time mean velocity components and
pressure as well as variances and covariances of products of the velocity components, from
which the turbulent or Reynolds stresses can be computed. Figure 3 illustrates contours of time
mean stream-wise velocity for the STARCCM+ calculation at 10.1 seconds. It can be seen that it
1s not yet symmetric about the center lines; eventually, the mean stream-wise velocity should
become symmetric about lines drawn vertically and horizontally through the duct center and also
about diagonal lines drawn between opposite corners.

Mean of Velocity(k) (m/s)

!-U.DDDEZZ

-0.346

-0.690

Figure 3. Time-average ¥ velocity for STARCCM+ at 10.1 sec.

Figure 4 illustrates contours of the time-averaged U and W velocity components, averaged from
5 to 7 seconds for the Nek5000 calculations. It can be seen that there is rough symmetry about a
horizontal line through the centre for U and about both horizontal and vertical lines through the
center for W. The symmetry would be much better had the time-averaging been performed over
a longer period. After performing time-averaging, it is desired to perform local volumetric-
averaging as described in Sec. 2. A volumetric averaging procedure was developed and coded
into a separate utility code to perform volumetric averaging on time averaged quantities from the
Nek5000 calculation. Figure 5 illustrates contours for the time-averaged velocity component V'
on the fine 24 x 24 x 32 grid and the time and volume-averaged (V) on the coarser 6 x 6 x 8 grid,
with both grids shown. It can be seen that the contours are quite similar on the two grids. Agam,
there 1s very rough symmetry about a vertical line through the center for V in this plot. Note that
the collocation points, or Gauss-Lobatto-Legendre points, for the spectral elements (points where
the mesh lines intersect) are spaced more finely near the element edges.

Figure 6 illustrates contours for the time and volume-averaged velocities (/) and (W) on the
coarser mesh. Comparing these illustrations with those of Fig. 4, the time-averaged components
on the fine grid, it appears that the contours are very similar before and after volume averaging.
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Figure 7 illustrates the time and volume-averaged variances and co-variances (U2U2) | (W2W2),
(UAVY), and (UAW?); see Eqn. (9). The other variance (V2V%) is similar to (U2U*) and the
other co-variance (VAW?2) is similar to (U*W?2) (when rotated 90 degrees), as expected. These
correlations are related to the deviation of the fine-grid time mean from the time and volume
means on the coarse grid. It can be seen that the peak values for these correlations occur near the
walls. Also note that the cross-stream variance {U2U2) is two orders of magnitude smaller than
the stream-wise correlation {W2W2) and that the cross-stream co-variance {U2V2) is an order of

magnitude smaller than the co-variance (J2W2).
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Figure 7. Time and volume-averaged variances and co-variances of the deviation of fine-grid
volume values from the coarse-grid volume average.

Figure 8 illustrates the time and volume-averaged turbulence-related variances and covariances
(u'u’y, (w'w'), {u'v") and (u'w'), see Eqn. (9). The other variance (v'v’) is similar to {u'u’}
and the other co-variance {(v'w’) is similar to {(u'w’) (when rotated 90 degrees), as expected.
There is clear, albeit rough, symmetry for both {u'u") and {w'w') across horizontal and vertical
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lines through the duct center. The co-variance (wW'w’) also shows rough symmetry about
diagonal lines between opposite corners, as it should. The co-variance (u'v') exhibits rough
symmetry about the diagonal lines, while the co-variance {(u'w’) shows rough symmetry about
vertical and horizontal lines drawn through the duct center. For the turbulence correlations, it is
apparent that the cross-stream component {u'u') is only about a factor of four smaller than the
stream-wise component {w'w’), while the cross-stream co-variance term {u'v’) is also only
about a factor of four less than the co-variance {u'w’). Thus, the turbulence correlations are
much larger than the correlations related to volume averaging and there is much less variation in
peak magnitude between turbulent co-variances than between those related to volume averaging.
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Figure 8. Time and volume-averaged variances and co-variances of that are related to the
turbulent fluctuations.

The third stage of DMA is to start the calculation on the coarser grid using the time and volume
averaged quantities (IJ;) and (P) as the primary variables of the computation with the terms

involving the newly generated correlations {uju]) and (UiAU]-A) added as constant source terms.

Note that it is the gradients of these correlations that appear in the describing equations, Eqn. (9).
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Also note that the code Nek5000 can simply be invoked as if the original primitive variables
used for the DNS were being used. Of course, the terms involving the new correlations are
added as source terms. Interestingly, the computations of the third stage behave as if an LES
were being computed. After only a short time, the time and volume-averaged fields of Figs. 5
and 6 resume a fluctuating field, as for the initial DNS calculation, albeit on the coarser grid.
Figure 9 illustrates the field for (UJ) and (W) at 0.5 seconds beyond the initiation of the third
stage of DMA. Note that the computations required about 139 sec. per 1 sec. of simulation time
for 12 cpus. Comparing this to the DNS case, and assuming that the parallel scaling is perfect,
this decrease in compute time for the same simulation time is a factor of about 510. Of course,
this is only valuable if the final results of the coarse-scale calculation are reasonably accurate
compared to the DNS or to reality.
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Figure 9. Time evolution of time and volume-averaged velocity components (V) and (W) after
0.5 sec of the initiation of computation on coarser grid.

Computations have been carried out to 130 seconds (including initial DNS simulation time) for
the third stage of DMA. During this calculation, a running time average has been kept of the
primary variables and of the vorticity. To visualize the development of the present flow field,
the stream-wise vorticity component is plotted for four times, including 55, 80, 105 and 130
seconds in Figure 10. As can be seen, the contours across vertical, horizontal and diagonal lines
through the center improve with simulation time and are quite close to being symmetric.
Furthermore, the vorticity contours shown are very similar to those reported by Raiesi et al.
(2011) for their DNS in a square duct. The vorticity patterns exhibited in Fig. 10 are indicative
of secondary flow where the flow in the cross-sectional plane moves towards the corners, turns
and flows towards the centers of the sides and then back towards the duct center. Such a flow
pattern 1s well-known and is a result of anisotropic turbulent motions.
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Figure 10. Time-averaged, time and volume-averaged stream-wise vorticity component contours
on the coarser grid at various simulation times.

Figure 11 provides contour plots of the time-averaged, time and volume-averaged velocity
components (U), (V), and (W) and the pressure (P). That is, the plots show the time mean of the
flow field on the coarse grid. The results for (U} and (V) are both fairly symmetric about
horizontal and vertical lines through the center. They should also be very similar upon rotation
of the plot by 90 degrees, which they are. The results for and {W) and {P) are seen to be quite
symmetric about vertical, horizontal and diagonal lines drawn through the center, as they should
be for a temporally fully-developed DNS. The contours for (W) closely resemble contours for
the stream-wise velocity illustrated in Raiesi et al. (2011) for their DNS calculations. The
present calculations can be seen as somewhat equivalent to an LES, except that the sub-grid scale
model is not a model, but a field based on a short time DNS computation, providing an estimate,
based on first principles, of the coupling between the fine and coarse scales of the flow field. It
is interesting to note that even though the correlations (uju/) and (U} UjA) (which are being used

for the coarse grid calculations as constant source terms) are only roughly symmetric and
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therefore approximate, as shown in Figs. 7 and 8, the eventual flow field has become quite
symmetric, as seen in Figs. 10 and 11. One may then conclude that the DMA approach shows
great potential to obtain the important effects of the turbulent flow field.
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Figure 11. Time-averaged, time and volume-averaged flow field components on the coarser grid
at 130 seconds of simulation time.

Summary and Recommendations

A new approach called dynamic multiscale averaging (DMA) for computing the effects of
turbulent flow is described. The new method encompasses multiple applications of temporal and
spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is
performed for a relatively short time; it is envisioned that this short time should be long enough
to capture several fluctuating time periods of the smallest scales. The flow field variables are
subject to running time averaging during the DNS. After the relatively short time, the time-
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averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of
the describing equations generate correlations in the averaged equations. These correlations are
computed from the flow field and added as source terms to the computation on the next coarser
mesh. They represent coupling between the two adjacent scales. Since they are computed
directly from first principles, there is no modeling involved. However, there 1s approximation
involved in the coupling correlations as the flow field has been computed for only a relatively
short time. After the time and spatial averaging operations are applied at a given stage, new
computations are performed on the next coarser mesh using a larger time step. The process
continues until the coarsest scale needed is reached. New correlations are created for each
averaging procedure. The number of averaging operations needed is expected to be problem
dependent.

The new DMA approach 1s applied to a relatively low Reynolds number flow in a square duct
segment. Results for each stage of the method are provided for various field vanables and their
temporal and volume averaging. The DNS computation is initiated using a nonphysical
asymmetric initial condition. After five seconds of simulation time, running time averages are
initiated and performed for another two seconds. The time-averaged variables are then volume
averaged onto a coarser mesh. The new coupling correlations are also computed. These
correlations are assumed to be constant for succeeding computations and are added as source
terms. Calculations are then performed using the time and volume-averaged field variables on
the coarser grid. The coarser gnd is essentially created using a mesh that has been reduced in
each coordinate by a factor of four. The time step is increased by a factor of five. The compute
time for a given time interval on the coarse mesh is about 1/500 the corresponding time required
on the fine mesh. Results for a final time of 130 seconds are presented. Time-averaged stream-
wise vorticity contours appear to be very similar to a full DNS for a similar flow reported in the
literature. Expected symmetry for the final results is produced for the DMA method. The results
obtained indicate that DMA holds significant potential in being able to accurately compute
turbulent flow without modeling for practical engineering applications.

The present study has been performed to demonstrate proof of principle. Significantly more
research should be pursued to fully explore the effectiveness and efficiency of the method.
Research should be performed to investigate how best to initiate turbulence to minimize the
mnitial DNS calculation, how long the DNS should be performed, how much to scale-up for a
given scaling, which numerical methods are best (fastest and most accurate) to use to perform
DMA, how well the method performs for large Reynolds number flows and how the method can
be applied to complex geometries.
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